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COMPUTER EXPERIMENTS ON THE STRUCTURE 

AND DYNAMICS O F  SPIRAL GALAXIES 

By FrankHohl 
Langley Research Center 

SUMMARY 

The evolution of an initially balanced rotating disk of stars with an initial velocity 
dispersion given by Toomre's local cri terion is investigated by means of a computer 
model for isolated disks of stars. It is found that the disk is unstable against very large- 
scale modes. After about two rotations the central portion of the disk tends to assume 
a bar-shaped structure.  A stable axisymmetric disk with a velocity dispersion much 
larger than that given by Toomre's criterion is generated. The final mass distribution 
for the disk gives a high-density central core and a disk population of stars that is closely 
approximated by an exponential variation. 

Various methods and rates  of cooling the hot axisymmetric disks were investigated. 
It was  found that the cooling resulted in the development of two-arm spiral  structures 
which persisted as long as the cooling continued. 

An experiment was performed to induce spiral  structure in a galaxy by means of the 
close passage of a companion galaxy. Parameters  similar to those expected for M51 and 
its companion were used. It was found that because of the rather high velocity dispersion 
of the disturbed disk galaxy, only a weak two-arm spiral  structure appeared as the result  
of the passage. 

The evolution of a uniformly rotating disk galaxy which is a stationary solution of 
the collisionless Boltzmann equation is investigated for various values of the initial r m s  
velocity dispersion. It is found that the disk becomes stable at a value of the velocity 
dispersion predicted by theory. 

INTRODUCTION 

With the introduction of computer models for thin self-gravitating stellar systems, 
the field of experimental stellar dynamics is beginning to provide fresh insights into the 
structures of spiral  galaxies. Two computer models for self -consistent disk galaxies 



have recently been described, and to a certain extent demonstrated, by Mil ler  and 
Prendergast (ref. 1) and by Hohl and Hockney (ref. 2.). 

To investigate the development of spiral  structure,  the model was modified by 
Hohl (refs. 3 and 4) to include a fixed central force similar to the Schmidt model of the 
Galaxy. It was then found that spiral  structure persisted for more than eight rotations. 
Miller, Prendergast, and Quirk (ref. 5) have also modified their model to include a dissi-  
pative component resembling gas. They found that some very interesting spiral  patterns 
developed, especially in the tvgas" component, and that such patterns remained for about 
three galactic rotations. Such a combined system of stars and gas seems more realistic 
for  the study of the spiral  phenomena than a model composed only of s ta rs .  

However, a basic understanding of the structure of galaxies clearly requires a 
knowledge of how purely stellar disks would behave. Accordingly, the present report 
will be concerned primarily with the dynamical evolution of isolated disks consisting of 
stars alone. The computer model used for the calculations is that developed by Hohl and 
Hockney (ref. 2). From previous work (refs.  3 and 6 to 9) it is, of course, already clear 
that disks of stars with velocity dispersions less  than those estimated by Toomre (ref. 6) 
to be locally stabilizing a r e  fiolently unstable. For  this reason the present paper reports 
primarily on disks with initial velocity dispersions at least equal to those given by 
Toomre's local criterion. In a previous paper (ref. 9) the authors were overenthusias- 
tic in calling such disks stable. It would have been more appropriate to say that only the 
fast-growing small-scale gravitational instabilities a r e  avoided when Toomre's criterion 
is satisfied. A s  will be seen herein, such disks remain susceptible to slower large-scale 
instabilities, primarily of the bar-making type. 

Thus, disks of stars a r e  considerably more difficult to stabilize than indicated by 
local analyses. It is, of course, only with the advent of computer experiments such as 
those described here that it has become possible to determine the behavior of disks of 
stars in the large. Before such experiments, there existed no really adequate theory 
describing the overall dynamics of disks of stars. 

Freeman (ref. 10) has summarized the observational evidence that most spiral  and 
SO galaxies have a dense spheroidal central component and a disk component of stars 
described by an exponential light distribution. One of the questions the present report 
t r ies  to answer is whether a disk of stars will evolve to a similar final state. 

In published work (refs. 1, 2 ,  3 ,  5, and 9) on the simulation of disk galaxies, the ini- 
t ial  conditions chosen were not solutions of the time-independent collisionless Boltzmann 
equation. Even though some of the initial conditions (refs. 3 and 9) were for initially bal- 
anced disks, these initial conditions did not correspond to stationary disks. One excep- 
tion to this is the "cold" balanced disk, which, however, is violently unstable. In the 
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present paper the evolution of initially stationary disks for various temperatures is 
investigated. 

The computer model used f o r  the calculations is described in the appendix. 

How striking the resemblance of computer-simulated disk galaxies is to actual 
galaxies is shown in figure 1. In that figure four computer-generated galaxies a r e  com 
pared with photographs of actual galaxies. 
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SYMBOLS 

total energy 

distribution function 

gravitational constant 

Green's function 

angular momentum 

gravitational field, VC#I 

mass  of Sun 

mass 

dimension of a r ray  used in potential calculations 

Q = ur/ur,min 

R radius of disk galaxy 

r,e,z cylindrical coordinates 

rotational period of cold balanced disk TO 

t time 
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Subscripts: 

rotational velocity 

velocity 

Cartesian coordinates 

Dirac delta function 

epicyclic frequency 

surface mass density 

velocity dispersion 

velocity dispersion defined by equation (3) 

gravitational potential 

angular velocity 

angular velocity of cold balanced disk 

summation indices 

summation indices 

maximum 

radial and azimuthal component 

summation indices 

Fourier transformed quantity 
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EVOLUTION OF AN INITIALLY BALANCED UNIFORMLY ROTATING DISK 

In the following sections the evolution of a balanced uniformly rotating disk of stars 
with an initial velocity dispersion given by Toomre's local cri terion (ref. 6) is investi- 
gated. Disks with other initial mass  distributions have previously been investigated in 
less detail (ref. 3). 

Initial Conditions 

The present report  describes in  detail the evolution of a balanced uniformly rotating 
disk of stars with an initial velocity dispersion given by Toomre's local criterion. The 
surface mass density of the uniformly rotating disk is given by 

where r is the radial coordinate, R is the radius of the disk, and p(0) is the central 
surface mass density. The uniform angular velocity required to balance the cold (zero- 
velocity-dispersion) disk is 

wo=Tr - E 
where G is the gravitational constant. 

Toomre's local criterion (ref. 6) for  suppression of all  axisymmetric instabilities 
requires a minimum radial velocity dispersion (Gaussian velocity distribution) given by 

GP ~ ~ , ~ i ~  = 3.36 - 
K (3) 

where or2 is the second moment of the distribution function, y is the local value of 
the density, and K is the local value of the epicyclic frequency. The epicyclic frequency 
is defined by 

where Kr is the radial component of the gravitational field. For the uniformly rotating 
disk Kr = coo%; thus, K = 2w0 and 
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'r ,min = 0.341Ftw0,/3 

To determine whether Toomre's criterion will stabilize the disk, the initial (Gaussian) 
velocity dispersion is taken as 

fo r  the radial component and 

for the azimuthal component. 
become 

For the uniformly rotating disk, equations (6) and (7) 

ur(r) = (T (r) = 0.341Rw0 
9 

Because of the added velocity dispersion the initial angular velocity of the stars w for  
a balanced disk is lower than coo. By summing the forces acting on a small  surface ele- 
ment of the disk, the following equation is obtained: 

For the uniformly rotating disk, equation (9) gives w = 0.809w0, which results in a cir-  
cular velocity given by 

The initial conditions do not exactly satisfy the collisionless Boltzmann equation for  a 
stationary stellar disk. An initial condition with a Gaussian velocity distribution was  
preferred to the stationary initial state corresponding to the density given by equation (l), 
because Toomre's criterion is strictly valid only for Gaussian velocity distributions. The 
stationary state for the uniformly rotating disk (ref. 11) has a peculiar non-Gaussian veloc- 
ity distribution such that the density in phase space is not a decreasing function of epicy- 
clic amplitude; hence overstabilities may be present (ref. 12). With the exception of the 
uniformly rotating disk, there is a rather unfortunate lack of exact, hot equilibrium models 
for  disks of stars. 

6 



The initial distribution of stars is generated by means of a pseudorandom-number 
generator. The initial circular velocity is given by equation (lo), and superposed on the 
circular velocity is a velocity dispersion with a Gaussian distribution corresponding to 
~ ~ , ~ i ~  as given by equation (8). 

Axisymmetric Evolution 

Since the initial state chosen for the model is not an equilibrium state,  the axisym- 
metric behavior of the disk is first investigated to determine whether any axisymmetric 
instabilities o r  other misbehavior might be present. This is done by considering the evo- 
lution of the initial disk under a gravitational field that is constrained to remain purely 
radial. This gravitational field is obtained by averaging at each time step the fields com- 
puted in the *x-directions and the -+y-directions. The results a r e  shown in figure 2 for 
eight rotations. Initially the disk has an arbitrarily chosen radius of 8 kpc. The square 
border enclosing the disk is then at x = *19 kpc and y = it19 kpc and covers only part 
of the 128 x 128 square a r r ay  of cells used for the gravitational-field calculations. Each 
of the 100 000 stars in the disk can be thought of as having a mass of 0.84 X 106M,. The 
time shown in figure 2 and in  subsequent figures is in units of the rotational period of the 
cold balanced disk; each such unit equals 1.5 X lo8 years.  

The disk shown in figure 2 remains, of course, axisymmetric. After a few small  
pulsations it settles down to an essentially steady state. When the total kinetic energy of 
the disk is plotted as a function of time, the initial amplitude of the oscillations in the 
total kinetic energy is about 8 percent of the mean value. These oscillations in the total 
kinetic energy a r e  quickly damped; after four rotations the amplitude of the oscillations 
is less  than 1 percent of the mean value. Figure 3 shows the evolution of the density. 
Again it can be seen that the system quickly reaches a steady state. During the evolution 
of the disk, the value of ar/ur,min remains near unity for  r less than 5 kpc. These 
results show that any troubles the disk may have a r e  basically nonaxisymmetric in nature. 

The disk in figure 2 at t = 8 should now be very close to a stationary state of the 
collisionless Boltzmann equation. If the evolution of the disk is continued without the con- 
straint  of keeping the gravitational field radial, the evolution shown in figure 4 is obtained. 
In less  than two additional rotations the disk assumes a bar-shaped structure - an indi- 
cation that the newly made equilibrium is unstable in a nonaxisymmetric sense. 

Fully Nonaxisymmetric Evolution 

These instabilities a r e  now studied by returning to the smooth but slightly nonequi- 
librium disk that w a s  the start ing point for figure 2. Those initial conditions, by the way, 
a r e  such that the virial theorm is satisfied - that is, the negative of the calculated poten- 
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tial energy equals twice the kinetic energy with an accuracy of about 0.5 percent. This 
small  discrepancy is meaningless because of the approximate method used for calculating 
the potential energy (ref. 2). Also, the maximum change in  the calculated total energy of 
the system during its evolution is near 1 percent, and the variation in the total angular 
momentum is even less. 

The totally unconstrained evolution of this disk is displayed in figure 5. It shows 
that the disk is indeed stabilized against small-scale disturbances which would completely 
disrupt a cold disk in less than one rotation (ref. 3). However, it is again found that the 
disk is not stabilized against relatively slow - growing large - s cale disturbances which 
cause the system to assume a very pronounced bar-shaped structure after two rotations. 
After about four rotations the disk population of stars constitutes a nearly axisymmetric 
distribution surrounding a dense central oval or bar-shaped core.  The oval contains 
nearly two-thirds of the total mass  of the disk and has an  axis ratio of about 3:2. After 
about four rotations there is little change in the structure of the disk, and the bar rotates 
with a constant period of 2.25 t imes the period of the cold balanced disk. 

To obtain more quantitative information on the structure and evolution of the bar- 
shaped central part  of the system, a number of annular rings 1 kpc in width and concen- 
t r i c  with the disk were superposed on the disk shown in figure 5. Each annular ring was 
divided into 100 equal segments, and the number of stars in each segment was determined. 
The results are shown in figure 6 for annuli centered at the three radii shown. The fluc- 
tuations caused by generating the initial positions of the stars by means of a random- 
number generator can be seen for the curves at t = 0. At  this time there a r e  no stars 
in the annulus at r = 10 kpc because the initial disk has a radius of only 8 kpc. After 
one rotation the bar structure begins to form and stars a r e  ejected beyond the 10 kpc 
radius. At t = 2.0 the bar is very pronounced, and after this time it begins to broaden. 
After eight rotations the disk has assumed a steady state,  as indicated by the result that 
neither the amplitude nor the structure of the rotating bar  changes any longer, 

To picture the radial variation of parameters describing the disk, the disk was 
divided into a number of concentric rings each 0.5 kpc in width. The radial dependence 
of various parameters averaged azimuthally over each ring was  then obtained. Figure 7 
shows the radial variation of the r m s  radial-velocity dispersion obtained in that manner. 
At t = 0 the radial velocity dispersion is described by equation (5). As high-velocity 
stars a r e  ejected radially outward, the velocity dispersion becomes large for large radii. 
After about eight rotations the velocity dispersion remains essentially unchanged. In 
interpreting the results shown in figure 7 and in subsequent figures, the nonaxisymmetric 
shape of the disk for small  radii (r < 8 kpc) should be kept in mind. A better indication 
of how hot the stars in the disk are can be obtained from a plot of the azimuthally aver- 
aged value of 
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r ,min v 

(The value of 
obtaining K from the slope of Kr.) The radial dependence of Q is shown in figure 8. 
Initially Q is given a value near 1. However, as the disk evolves, Q increases rapidly 
in  the outer regions of the disk. Figure 8 is typical of the high velocity dispersion in  the 
outer par ts  of the disk for  computer-generated galaxies. For a number of other initial 
conditions (ref. 3), typical values of Q were found to be between 2 and 4. 

= 3.36 G ~ / K  is obtained by using p as given in fig. 9 and by 

The evolution of the surface mass  density is shown in figure 9. It can be seen from 
this figure that the central mass  density increases by about a factor of 4 during the 
11.6 rotations shown. After eight rotations the radial variation in density changes only 
very little. To determine how closely the final density variation corresponds to an  expo- 
nential variation, the density fo r  t = 8 and t = 11.6 rotations is plotted in figure 10 on 
a semilog scale. This distribution of the disk population of stars (outside r = 8 kpc) is 
closely approximated by an exponential variation with a scale length of 8.6 kpc. In the 
high-density central oval the density also closely follows an exponential law, but with the 
much shorter scale length of 1.44 kpc. Figure 10 also illustrates how little the structure 
of the disk changes during the last 3.6 rotations. The density functions shown in figures 9 
and 10 represent the azimuthally averaged value. In figure 11 is presented the unaveraged 
density at t = 8 along the bar  and across  the bar.  As expected, the density falls off 
fas ter  across  the bar  than it does along the bar.  For radii greater than about 10 kpc the 
densities in the two directions are essentially the same. 

GENERATION OF A STABLE AXISYMMETRIC DISK 

It was found that disks of stars with initial conditions generated according to analyt- 
ical expressions such as equations (1) to (10) are generally unstable and finally assume a 
steady state with a central bar-shaped structure. The evolution of such warm disks is 
found to be very s imilar ,  irrespective of whether the initial mass  distribution is Gaussian, 
exponential, or some other distribution (ref. 3). Also, the stationary state finally reached 
by the disks results in a very hot population of stars in the outer part of the disk, as is 
shown in figure 8. In order  to generate an axisymmetric stable disk, the final distribution 
of stars (at t = 11.6) of the disk shown in figure 5 was used as an initial condition after 
symmetrizing out the bar structure. All stars kept the same (radial and tangential) veloc- 
ity components and radius, but they were redistributed randomly in longitude. This new 
disk has the same radial variation of its different parameters as given (at t = 11.6) in 
figures 5, 7, 8, 9, and 10. 



I 
I The reason for  using this highly artificial procedure of "symmetrizing" was mainly 

to show that the bar structure,  although here persistent, is not necessarily very strong or  
"deep." Figure 12 depicts the evolution of the new disk for  six rotations. The disk is 
now axisymmetric and stable; all parameters remain essentially constant during the evo- 
lution. For  example, the variation of the density given in figure 13 shows no change 
between two and six rotations. Note also that the "experimentally" obtained density vari- 
ation is closely approximated by the sum of the exponentials 
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p(r) = 4.2 x 109 exp(- &) + 3.6 x lo7 exp - - ( L6)  

Since the disk is axisymmetric and stable, the variation of its r m s  velocities near a fixed 
radius should provide information on collisional or  thermalization effects that may be pres- 
ent in the model. In figure 14 the r m s  velocities of stars in a 0.5-kpc-wide ring centered 
at the four radii shown a r e  plotted as a function of time. It can be seen that there is no 
systematic increase (or decrease) in the r m s  velocities for  the six rotations shown. 

Figure 15 shows the radial dependence of the mean circular velocity of the stars 
(V,), of o = ,/-, and of ro. It is interesting to note that the azimuthally averaged 
radial dependence of the parameters of the disk did not change after the central bar  struc- 
ture  was eliminated by symmetrizing. The values of Q for the axisymmetric disk a r e  
the same as shown in figure 8 at t = 11.6 and are rather high. For  some of the disks 
investigated, final values of Q near 2 were obtained. However, for most of the disks 
investigated (ref. 3) the final value of Q is near 4.  

COOLING OF THE AXISYMMETRIC DISK 

The stable axisymmetric disk described in the previous section is rather hot, espe- 
cially in the outer regions of the disk. It is therefore of interest to determine the effects 
of cooling the disk. Various methods of caoling were tried. For example, during each 
rotation a certain percentage (from 5 to 30 percent) of the stars, chosen at random, had 
a portion of their noncircular velocities removed in proportion to their radii. Thus stars 
near the center kept nearly all  their random motion whereas stars far away from the 
center were placed in more nearly circular orbits. Another method, somewhat more 
analogous to the '(gas collisions" of Miller et  al. (ref. 5) was simply to place a certain 
percentage of the stars during each rotation into purely circular orbits. All methods of 
cooling which were tr ied gave essentially the same results. 

Figure 16 shows the effects of cooling when for each rotation 10 percent of the stars 
are selected at random and a r e  placed in circular orbits. The initial disk is that shown 
in figure 12 at t = 6. During the first three rotations the appearance of the disk changes 
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little. However, at t = 3.1 there is already a pronounced bar structure at r = 2.5 kpc. 
After t = 3.1 a two-arm structure appears, which during the following 1.5 rotations dis- 
plays a theta-shaped structure. After t = 4.5 the spiral  structure opens up and rotates 
with a fairly constant speed of about 10 km s-l kpc-l. This compares with a mean circu- 
lar velocity of the stars of about 15 km s-1 kpc-I at r = 10 kpc. These results tend to 
support the density-wave theory of Lin (ref. 13). At t = 6 the value of Q for  the disk 
was between 2 and 3. Any further cooling only caused the collective instabilities to heat 
up the disk as fast as it was being cooled. This effect can be seen in figure 17 where the 
radial velocities of the stars a r e  plotted as a function of radius. At t = 2 the effect of 
placing a number of stars in purely circular orbits is clearly visible by the concentration 
of stars with zero radial velocity. At t = 4 an increased velocity dispersion corre-  
sponding to the condensation of stars in the theta-shaped spiral  a r m s  is clearly visible. 
Also, the effects of heating by means of collective instabilities prevent a reduction of the 
radial velocity dispersion after t = 6. Figure 18 displays the azimuthal variation of the 
number density at three radii. These results show that in addition to the density-wave- 
like spiral  structure of the outer disk, the galaxy also develops a strong barlike structure 
of the central core.  

The results of removing a portion of the s ta rs '  random velocity in proportion to the 
star's radial distance is shown in figure 19. Thirty percent of the stars a r e  affected 
during each rotation. The results a r e  slightly different from those of figure 16, primar- 
ily because the cooling rate is now larger.  In fact cooling proceeds now so rapidly that 
at t = 11 clusters of stars have condensed and are circling the central core as satellites. 

EFFECT OF SATELLITE GALAXY 

Alar Toomre of the Massachusetts Institute of Technology has studied a number of 
spiral  galaxies and found that many have nearby companion galaxies. To determine the 
effect of a close passage, a stable axisymmetric disk galaxy similar to that shown in fig- 
ure  12 was perturbed by the passage of a companion galaxy having one-fourth the mass of 
the primary galaxy. The parameters for M51 were chosen for the calculations. The orbit 
w a s  direct, the inclination of the companion's orbit plane to the plane of the primary gal- 
axy was 75O, the angle between the node and periapsis was 20°, and periapsis was 25 kpc. 
The effect of the passage on the structure of the primary galaxy is shown in figure 20. 
The time is given in rotational periods of the primary galaxy; t = 0 corresponds to the 
time at periapsis. These results indicate that only a weak two-arm spiral  structure 
developed. This was to be expected since the velocity dispersion of the primary galaxy 
is rather high, as shown in figure 21. The value of Q ranges from about 2 in the cen- 
tral region to 6 in  the outer disk. A more detailed view of the velocity distribution is 
given in  figure 22, where the radial velocity distribution for  the stars in various annular 
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rings is given. The effect of the large random velocities on the formation of spiral  struc- 
ture can be determined by plotting the distribution of stars in various velocity intervals. 
This is done in  figure 23. As can be seen, the spiral  structure is quite pronounced for  the 
lower velocities, but can hardly be detected for the higher velocities. This was to be 
expected since the large random velocities have a dispersive effect on the formation of 
spiral  structure. It thus appears that a much cooler primary galaxy is needed to study 
the effects of a close passage. 

SELF-CONSISTENT STATIONARY DISKS 

Presently, there a r e  no really '?good" stationary solutions of the collisionless 
Boltzmann equation available for  disk galaxies. For certain mass  distributions analyti- 
cal  stationary solutions can be obtained; however, these solutions have certain undesirable 
features (e.g., the distribution function becomes singular at the edge of the disk) which 
make them unlike any "real" galaxy. Nevertheless, there a r e  analytical predictions as 
to the stability and behavior of such disks. Thus, by investigating such stationary states, 
it is possible to determine whether the analytical methods used to study the behavior of 
disk galaxies yield the correct predictions. 

Theory 

A time-independent, axisymmetric self-consistent disk of stars is described by the 
collisionless Boltzmann equation 

where V r  and ve a r e  the radial and azimuthal velocity components and f(r,vr,ve) is 
the distribution function defined so  that 

dm = f ( r ' v r' v e) dvr dver d r  de (13) 

corresponds to the mass in  a phase-space element within the surface element r d r  de. 
The gravitational field Kr equals -, where the potential @(r,z) is obtained from the 
Poisson equation 

a@ 
a r  

= 47rG p ( r )  6(z) (14) 

where G is the gravitational constant and the density p(r)  is given by 
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According to Jeans' theorem (refs. 14 and 15), any function of the form 

is a solution of equation (12), where the energy E and the angular momentum J are 
given by 

E = i(vr2 + v z )  + $I 

and 

J = rv6 

An axisymmetric mass-density variation for which the corresponding distribution 
function can be obtained is that for the uniformly rotating disk 

where y(0) is the central mass  density and R is the radius of the disk. The gravita- 
tional potential inside the disk is (ref. 3) 

where wo = 7~ /=  is the uniform angular velocity required to balance the cold 
(zero-velocity-dispersion) disk. Omitting the constant te rm in equation (17) gives 

2E = wo2r2  + vr2 + ve2 (18) 

Consider now a distribution function of the form 

where w is the constant angular velocity of the disk, constrained so that 0 5 w 5 wo. 
This requires that 

C2 - 2E + 2 w J  2 0 
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Thus, for  r = R, vr = 0, and vB = Rw, 

c2 - wo2R2 - w2R2 + 2w2R2 = 0 

o r  

C2 = (w02 - d ) R 2  

Substituting for E,  J, and C2 allows equation (19) to be written as 

f(E,J) = Cl[(wo2 - w2)R2 - 2E + 2 w J  Y2 

From equation (15), 

Therefore, since p ( r )  = p ( 0 )  J-" 1 the following equation is obtained: 
R2' 

and 

The distribution function (21) is a stationary solution of the Boltzmann equation (12). In 
equation (21) w = wo corresponds to the cold, violently unstable disk which was previ- 
ously investigated (refs. 2 and 3). For w = 0 the disk is nonrotating and purely pres- 
sure  supported. 

Toomre (ref. 6) estimated that for a disk with a Gaussian velocity distribution, a 
velocity dispersion equal to or greater than 

GP ~ ~ , ~ i ~  = 3.36 - 
K 
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should be locally stabilizing for  exponentially growing axisymmetric modes. Toomre’s 
evaluation of 
bution given by equation (21). Also, overstabilities may be present since the density of 
stars in phase space is not a decreasing function of epicyclic amplitude (ref. 12). Never- 
theless, equation (18) should represent the local criterion for  squelching axisymmetric 
exponentially growing modes (ref. 16). Therefore, 

is not easily extended to the present non-Gaussian velocity distri-  

Q=- O r  

Or,min 

is used as a parameter in investigating the stability of the disks. The value Q = 1 
expected to be a lower bound on the r m s  velocities needed for stability. Using f(T,Vr,Ve) 

as given by equation (21) results in  since vr and ve - r w  appear in the same form in 
equation (211, ae2 = or”> 

is 

o r  

For  the uniformly rotating disk, or,min is given by equation (5), so that 

O r  

O r ,  min 
Q =-= 1.69 

The variation of Q as a function of w for the uniformly rotating disk is shown in fig- 
ure  24. The value of Q varies from zero for  w = wo to 1.69 for w = 0; Q is equal 
to 1 for w 0 . 8 ~ ~ .  
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Results 

The results presented in this section were obtained with a 128 X 128 active mesh 
fo r  the potential calculations. The disks consisted of 100 000 stars and there were 
200 time steps per  rotation. 

The case of a cold disk w = wo w a s  previously investigated (ref. 3) and as expected 
the disk was  found to be violently unstable. The present investigation considers disks 
with w = 0.8w0, w = 0.6w0, w = 0.4w0, and w = 0 corresponding to initial values of 
Q given by Q = 1.01, Q = 1.35, Q = 1.55, and Q = 1.69, respectively, where Q is 
given by equation (23). It should be emphasized that the model galaxies represented by 
equation (21) do not represent a mass or velocity distribution that one would expect to 
find in nature. For example, for the maximum velocity at a given radius 

Vm, = /- 
f(r,Vr,Ve) as given by equation (21) is actually singular, and f(r,vr,vg) increases with 
increasing vr o r  ve. However, presently there are no really "good" stationary solu- 
tions of the collisionless Boltzmann equation available for  disk galaxies. Some interesting 
solutions for  self-gravitating disklike stellar systems a r e  discussed by Miyamoto (ref. 17). 

The evolution of four disks of stars corresponding to equation (21) with 
(a) w = 0.8wo, (b) w = 0.6w0, (c) w = 0.4w0, and (d) w = 0 is presented in figure 25. 
Each of the 100 000 stars in the simulation represents 0.84 X lo6 solar masses,  so that 
the total mass  of the disk galaxy is 0.84 X 101lM, (solar masses). The rectangular bor- 
der  enclosing the disks represents the active 128 X 128 a r r ay  of cells used in the cal- 
culations. The initial radius of the disks is 16 kpc. Since the disks become progres- 
sively more stable as the initial velocity dispersion is increased (or w is decreased), 
the evolution of the more stable systems is investigated for longer times. The times 
shown in figure 25 and subsequent figures a r e  in units of the rotational period of the 
cold (zero-velocity-dispersion) disk To = 27r/w0. Figure 25(a) shows that fo r  Q = 1 
(or w = 0.8w0), the system is unstable and within two rotations it has formed a bar- 
shaped structure. After three rotations this structure remains essentially unchanged. 
It should be noted that all small-scale instabilities which occurred in the cold disk (ref.  3) 
have been stabilized. Only the large-scale "bar making'' instability is present. A simi- 
lar result is shown in figure 25(b) fo r  Q = 1.35, or  w = 0 . 6 ~ ~ .  However, the bar struc- 
ture is now much less  pronounced. For Q = 1.55, the system is essentially stable. Some 
of the stars near the edge of the disk tend to escape to larger radii. This is to be expected 
since the distribution function f(r,vr,vg) is singular at the edge and star orbits tend to 
be unstable there. Similar results a r e  obtained f o r  the nonrotating disk shown in fig- 
ure  25(d). Figure 25 indicates that the disk becomes stable for values of Q somewhere 
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between 1.35 and 1.55, o r  for  values of w between 0 . 6 ~ ~  and 0 . 4 ~ ~ .  These results 
a r e  in agreement with a normal-mode analysis of a family of uniformly rotating disks 
which was performed by Agris J.  Kalnajs at Tel-Aviv University, Tel-Aviv, Israel. In 
his analysis (as yet unpublished), Kalnajs finds that the simple mode corresponding to 
the bar disturbance becomes unstable for values of w greater than about 0.508. 

The evolution of the distribution of the radial velocities of the stars as a function of 
star radial distance is shown in figure 26. A s  can be seen from figures 26(a) and (b), the 
radial velocities of the stars increase rapidly as the system evolves. Also, a large num- 
ber of stars greatly increase their distance from the center of the disk. For w = 0 . 4 ~ ~  
and w = 0, the results in figures 26(c) and (d) show that there is little increase in  the 
radial velocities, which of course were already large at t = 0. Only a few stars increase 
their radial distance beyond the initial disk radius, especially for the disk in figure 26(d). 
Nevertheless, the distribution of radial velocities at t = 3 in figure 26(d) shows that 
quite subtle changes take place in the velocity distribution near the edge of the disk. 
However, these changes do not appear to affect the structure of the disk appreciably. 
The rectangular border enclosing the velocity distributions in figure 26 extends from 
-350 km/sec to 350 km/sec and from 0 to 30 kpc. 

In order to obtain more quantitative information than can be obtained from figures 25 
and 26, the disk is divided into a number of concentric rings, each 1/2 kpc in width. The 
radial dependence of various parameters averaged azimuthally over each ring is then 
obtained. 

An indication of how hot a disk of stars becomes can be obtained from the evolution 

of Q=- ur . Figure 27 shows the evolution of the azimuthally averaged Q for the 
O r  ,min 

four disks. The results in figure 27(a) indicate that the disk becomes rather hot, with 
values of Q in the outer parts of the disk near 5. For the disk with an initial angular 
velocity of w = 0.6w0, the value of Q increases from 1.35 to about 2. Smaller increases 
occur for the disk in figure 27(c). Finally, the value of Q in figure 27(d) for the non- 
rotating disk remains nearly constant at 1.69. 

The evolution of the azimuthally averaged density for the four disks is presented in 
figure 28. For  the most unstable disk, shown in figure 28(a), the final central density 
increases to a high value given by an approximately exponential density variation. Simi- 
lar results were previously obtained for other violently unstable disk galaxies (ref. 3). 
In figure 28(b) the central density oscillates between 1.4 X 108 and 2.1 X 108 M,/kpc%, 
reaching a final value of about 1.7 X 108 M0/kpc2 after 4.5 rotations. The changes in the 
density for the disk shown in figure 28(c) were the least pronounced of the four disks. 
For  the nonrotating disk in figure 28(d) the central density appears to be oscillating near 
the value 1.4 X lo9 M0/kpc2. When the kinetic energy of the disks is plotted as a function 
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of time, it is found that the kinetic energy initially oscillates nearly sinusoidally about 
the equilibrium value. The initial amplitude of the oscillations is about 5 percent of the 
equilibrium value and the period of the oscillations in all four cases  is near (slightly less  
than) the rotational period of the cold balanced disk. For the disks in figures 25(a) and 
(b), the oscillations a r e  strongly damped after the first two oscillations. For the disk in 
figure 25(c), the oscillations are more slowly damped, whereas for the disk in figure 25(d), 
the oscillations in the kinetic energy show no damping during the nine rotations 
investigated. 

CONCLUDING REMARKS 

The results on the evolution of initially balanced disks show that a velocity disper- 
sion given by Toomre's criterion will stabilize a disk against axisymmetric disturbances. 
Also, all fast-growing small-scale disturbances a r e  stabilized. However, all such "sta- 
bilized" disks investigated were found to be unstable against more slowly growing large- 
scale nonaxisymmetric disturbances, and the system consequently assumed a two-arm 
spiral  structure. After about three rotations, the spiral  structure disappears and the 
central portion of the disks assumes an oval o r  bar-shaped structure surrounded by a 
hot axisymmetric distribution of stars. In addition to the results presented here, the 
evolution of disks for  which the logarithm of the initial density decreased linearly and 
quadratically with radius (i.e., exponential o r  Gaussian laws) is also investigated. The 
results obtained were s imilar  to those presented here. 

It was possible to generate an axisymmetric stable disk only with considerable dif- 
ficulty. The initial condition for the axisymmetric stable disk was obtained by symme- 
trizing out the bar o r  oval structure in the central portion of the disk. The resulting 
axisymmetric disk w a s  stable, and the radial variations of all parameters remained as 
they were for the final state of the disk with the central bar structure.  

Attempts at slow cooling of stable axisymmetric disks indicated that whenever 

Q = -  Or (the ratio of the velocity dispersion to the minimum velocity dispersion given 
ar ,min 

by Toomre's stability criterion) reached about 2, further cooling would only cause the 
occurrence of collective instabilities which would heat up the disk as fast as it was being 
cooled. 

An interesting end result for all the disks of stars (which evolved from an initially 
unstable state) investigated s o  far is that the final distribution in the radial direction for 
the "disk population of stars" is closely approximated by an exponential variation of den- 
sity. This result may be significant since it agrees with observational evidence which 
indicates that the luminosity in the outer regions of many spiral  and SO galaxies seems 
also to decrease exponentially with radius. 
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The attempt to induce spiral  structure by means of the passage of a companion 
galaxy was only partly successful. Because of the rather large velocity dispersion of the 
disturbed galaxy the induced spiral  structure was weak. 

The investigation of a disk of stars which is a stationary solution of the collision- 
less  Boltzmann equation showed that the disk became unstable at a value of the velocity 
dispersion which agreed with the predictions made by a normal-mode analysis. For 
rotational velocities w of 0 . 8 ~ ~  and 0 . 6 ~ ~  (where wo is the rotational velocity of the 
cold, zero-velocity-dispersion disk) corresponding to Q = 1 and 1.35, respectively, the 
disk formed a barlike structure. For  w = 0 . 4 ~ ~  and w = 0 (or Q = 1.55 and 
Q = 1.69), the disk was stable against the bar-forming mode; however, for these two 
cases the disks sustained what appear to be natural oscillations, or  pulsations, with a 
period near the rotational period of the cold balanced disk. The pulsations were espe- 
cially pronounced for the nonrotating disk, where they did not show a decrease in ampli- 
tude for the nine rotations investigated. Since the initial conditions were generated by 
means of a pseudorandom-number generator, small oscillations a r e  to be expected. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., February 10, 1972. 
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APPENDIX 

COMPUTER MODEL 

Discretization Parameters  

The model for  the disk galaxy consists of a large number of representative stars 
(here 100 000) that are confined to move in the galactic disk. An N X N (here 
256 x 256) a r ray  of cells is superposed over the plane of the disk fo r  the purpose of cal- 
culating the gravitational potential. At the center of each cell a mass  density is defined 
which is given by the number of stars in that cell. The mass-density distribution is used 
to obtain the gravitational field at the center of each cell. From the gravitational field 
the force acting at the position of a star is calculated by means of a bilinear interpola- 
tion among the fields of the four cell centers surrounding the star. Newton's equations 
of motion a r e  then used to advance the position and velocity of each star by a small  time 
step. Typically, there are 200 time steps per "galactic rotation." If a star should leave 
the N x N ar ray  of cells, it is still included in the calculations by approximating the 
force acting on the star. With the exception of the improved potential solver described 
in  this appendix, the model used is the same as that previously described (ref. 3). 

The effects of varying the number of stars and various other discretization param- 
e te rs  were investigated by Hohl and Hockney (ref. 2). The effect of binary collisions for 
the model has been estimated (ref. 3) to be such that the collision time equals about 
100 "galactic rotations." The time history of the velocity dispersion of stars near var- 
ious radii presented in figure 14 also indicates that collisional or  thermalization effects 
a r e  unimportant for the time period used for the present calculations. 

Potential Calculation 

The scaled gravitational potential at the center of cell  (x,y) is defined by the double 
summation over the two-dimensional a r ray  of cells 

N-1 N-1 

where 

- 1/2 
~ i , j  = (i2 + j2) 

H0,O = 
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APPENDIX - Continued 

and pi,j is the mass  density in cell (i,j). The double summation is evaluated by the 
convolution method using fast Fourier transforms (ref. 2). That is, the Fourier trans- 
form of the potential equals the product of the Fourier transforms of p and H 

The gravitational potential @ . 

equation (A2). Rather than using a complex Fourier series, a real  expansion was  chosen. 
Fo r  example, the Fourier transform of the density p 

is obtained by taking the inverse Fourier transform of 
XYY 

is given by 
6 XYY 

y=o x=o 

y=o x=o 

N-1 N-1 

I (0 5 k, 2 5 n) 

(0 5 k 5 n) 
(n < 2 < N) 

(n < k < N) 
(0 S 2 5 n) 

where 

c (x )=  1/fi if x = o  o r  x = n  

c(x) = 1, otherwise 

The symbol n defines the n X n active array and N = 2n defines the larger a r ray  
over which the Fourier transform must be taken so that the potential for an isolated 
disk galaxy is obtained. Note that the density may be nonzero only in the smaller 
n X n array.  Because of the symmetry of HxYy, the Fourier transform Ek,Z can 
be obtained by a finite cosine transform: 
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APPENDIX - Continued 

y=o x=o 

and 

Y N N 

(0 S k, Z 2 n) (A4) 

The next step in obtaining the potential is to multiply pkYz by iik to obtain 
9 

The gravitational potential for  an isolated galaxy correctly defined over the n X n ar ray  
is obtained by the Fourier synthesis 

A FORTRAN listing of the computer program actually used to obtain the potential by use 
of an N x n ar ray  of cells is given on the following page. The variable 12A defines 
the size of the rectangular a r r ay  used for the potential calculations. When the subroutine 
GETPHI is called, RHO(1,J) contains the mass density and GETPHI places the values of 
the corresponding gravitational potential in RHO(1,J). The subroutine FTRANS(I,I2B) was 
written by Hockney (ref. 18) and it performs a finite Fourier analysis o r  synthesis on the 
COMMON input a r ray  Z and places the result in the COMMON output a r ray  Y. The 
subroutine performs a cosine analysis for I = 2, a periodic analysis for I = 3, and a 
periodic synthesis for I = 4. The subroutine GETSET(IJ2B) initializes FTRANS and 
is called every time the arguments of FTRANS(1,IBB) a r e  changed. The Fourier trans- 
form Hk,z is calculated on an (n+l) X (n+l) a r r ay  only the first time that the subroutine 
is called and is kept in storage for subsequent use. 
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APPENDIX - Continued 

SUBROUTINE FOR CALCULATING THE GRAVITATIONAL POTENTIAL 

SUBROUTINE GETPHI 
COMMON Z(257),Y(257) ,RH0(256,128) ,IZA,ITEST 
DIMENSION H(129,129) 
IF ( ITEST.EQ.0)  GO TO 10 
ITEST=O 
I2B=I2A-1  
N=2**12A 
N02=N/2 
N21 =N02+1 
RNI=1 ./(N*N) 
DO 1 J=l,,NZl 
DO 1 I = l  .N21 _. 

IF(i .EQ.i .AND.J.EQ.1) GO TO 1 
H( I ,J )=RNI /SQRT(( I - l  .)*(I-l . ) + ( J - l  . ) * (J -1 . ) )  

1 CONTINUE 
H ( l  , l )=RNI  
CALL GETSET(2,IZB) 
DO 2 J= l ,N21 
DO 3 I = l , N 2 1  

CALL FTRANS(2,126) 
DO 4 1=1 ,N21 

DO 5 1=1 ,N21 
DO 6 J= l ,N21 

CALL FTRANS (2 ,  126 
DO 7 J = l  .N21 

3 Z ( I ) = H ( I , J )  

4 H ( I , J ) = Y ( I )  
2 CONTINUE 

6 Z ( J ) = H ( I , J )  

7 H(I,J)=Y(J) 
5 CONTINUE 

1 0  CONTINUE 
CALL GETSET ( 3 .  I 2 A )  
DO 1 1  J = l  ,NO2 
on n T=I.N - - . ,.- 

8 i t I ) = R H O ( I , J )  
CALL FTRANS( 3 ,  I 2 A )  

00 9 1=1 ,N 
9 RHO(I,J)=Y(I)  

1 1  CONTINUE 
DO 1 2  I = l , N  
DO 13  J = l  .NO2 - - -~ _ _  .. . 

Z(J)=RHO( I ,J) 

CALL GETSET(3,ILA) 
13 Z(J+NOZ)=O. 

CALL F T R A N S ( 3 i I 2 A j  
IF ( I .GT.NP1j  GO TO 1 4  
DO 1 5  J=2,N02 
Z(  J)=Y (J )*H( I ,J ) 

1 5  Z(J+NOZ)=Y(J+NOZ)*H( I ,J) 
Z ( l ) = Y ( l  )*H( I ,1) 
Z(NZl )=Y(N21)*H( I ,NZ l )  
GO TO 1 6  

1 4  00 1 7  J=2,N02 
Z (J )=Y (J )*H( I-NO2, J ) 

Z (  1 ) = Y ( l  )*H( I -N02,1) 
Z(NZl)=Y(N21)*H(I-N02,N21) 

CALL GETSET(4, I 2 A )  
CALL FTRANS(4,ILA) 

1 7  Z (J+NO2)=Y (J+N02 )*H( I -NO2 ,J ) 

1 6  CONTINUE 

00 1 8  J = l  .NO2 
1 8  RHO(I,J)=Y(J) 
1 2  CONTINUE 

00 1 9  J= l ,N02 
00 2 0  1=1 .N 

CALL FTRANS ( 4 ,  I 2 A )  
DO 21 I = l , N 2 1  

2 0  Z(I)=RHO(I,J) 

21 RHO( I ,J ) = Y  ( I) 
1 9  CONTINUE 

RETURN 
EN0 

in the x-direction is obtained on the 
X,Y 

Next the Fourier transform of p 
is nonzero 

px,y in 
X,Y N x n ar ray ,  that is, for 0 S x  S N  - 1 and 0 S y  S n .  Since 1-1 

only over the n x n ar ray ,  the components of the Fourier transform of 
the x-direction will be zero for n < y < N. Therefore, by use of the one-dimensional 
a r r ays  Y and Z ,  one can perform the Fourier transform in the y-direction, multiply 
the result by E,,,, and take the inverse Fourier transform in the y-direction. The 
result is placed in the N X n RHO(1,J) a r ray  for 0 5 y S n - 1 and 0 5 x Z N - 1 
with the values for n < y < N discarded. The final step is to perform the inverse 
Fourier transform in the x-direction for 0 S y S n - 1. This procedure gives the cor- 
rect  gravitational potential for an  isolated disk galaxy over the n X n array.  

Table I gives the measured time for calculating the gravitational potential with the 
program listed above. Also shown a r e  the times required for the previous potential sol- 
ver which required a larger  N X N array.  A listing of that program is given in 
reference 3. 
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I 

0.182 
.660 

2.626 
10.794 

APPENDIX - Concluded 

TABLE 1.- COMPUTER TIME REQUIRED TO OBTAIN 

THE GRAVITATIONAL POTENTIAL 

0.144 
.526 

2.086 
8.530 

m CDC 6600 CPU time, s ec ,  for - 

2.440 
10 .ooo 

Active 
n X n  
mesh 

16 X 16 
32 X 32 
64 X 64 
128 X 128 

1.892 
7.740 

I ~ 

Present otential solver 
using 2 6  x n) storage 

fi calculated 1 fi given 
- ~ 

0.164 0.126 
.618 I .476 
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Computer simulation M 81, Sb-type spiral  galaxy 
L-72-125 

Figure 1 .- Comparison of four computer-generated galaxies with photographs of actual galaxies. 



Computer simulation NGC-175, SBab-type barred spiral galaxy 
L-72-126 

Figure 1.- Continued. 



Computer simulation M 101, Sc-type regular spiral  galaxy 
L-72-12'7 

Figure 1.- Continued. 
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Computer simulation NGC-1073, SBc-type barred spiral galaxy 
L-72- 128 

Figure 1.- Concluded. 



t = O  t = 1.6 

t = 4.8 t = 6.4 

t = 3.2 

I 

t = 8.0 

Figure 2 .- Axisymmetric evolution of an initially balanced uniformly rotating 
disk of 100 000 stars. The stars have an initial velocity dispersion given 
by Toomre's criterion and move under a purely radial gravitational field. 
Time in  this and al l  subsequent figures is given in units of the rotational 
period of the cold balanced disk. 
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Figure 3.- Evolution of the density for the disk shown in figure 2. 
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Figure 4.- Nonaxisymmetric evolution of the disk with an initial condition 
taken as the disk in figure 2 at t = 8. 
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t = 2.5 
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t = 5.0 

t = 10.0 

Figure 5 .- Unconstrained evolution of the initially balanced uniformly 
rotating disk of 100 000 stars. The stars have an initial velocity 
dispersion given by Toomre's criterion. 
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Figure 6.- Evolution of the azimuthal variation of the star density at three 
radii r (in kpc) for  the disk shown in figure 5. 
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Figure 7.- Variation of the radial velocity dispersion as a function of 
radius for the disk shown in figure 5. 
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Figure 8.- Dependence of Q = crr/ur min on radius for the disk shown in figure 5. 
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Figure 9.- Evolution of the mass  density plotted as a function of radius. The 
density is given in units of solar masses per  k p d .  (Note that each one of 
the 100 000 simulation stars has a mass  of 0.84 X 106M,.) 
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Figure 10.- Semilogarithmic plot of the density variation with radius 
after 8.0 and 11.6 rotations. 
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Figure 11.- Density variation along and across  the bar at t = 8.0. 
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Figure 12.- Evolution of a stable axisymmetric disk of 100 000 stars. Time shown 
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Figure 16.- Development of spiral  structure for a galaxy for which per rotation 
10% of the stars are placed in purely circular orbits. 
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Figure 17.- Evolution of the radial velocities for the galaxy shown in figure 16. 
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Figure 19.- Development of spiral  structure and condensations for a galaxy where 
per rotation 30% of the stars have part of their random velocities removed. 
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Figure 22.- Distribution of radial velocities for  the 
galaxy shown in figure 20. 
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(a) 0 < V r  < 20. 
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(c) 40 < V, < 60. (d) 60 < V r  < 80. 

Figure 23.- Distribution of stars in four velocity intervals at t = 3. 
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Figure 24.- Variation of Q = ur/ur min with o for the uniformly 
rotating disk of stars. 
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